DISCTRETE CASH FLOW: END-OF-PERIOD SINGLE CASH FLOW

1. <u>Compounding</u>: is calculating an equivalent amount of money in the future given some amount of money in the present $F = P(1+i)^N$ where F, P, i and N are future amount, present amount, interest rate and number of interest periods respectively. $(1+i)^N$ is the single payment compound amount factor.

Year/period	-		Capital growth at t+1 (Ending
	(Beginning	t+1 (Interest	Balance)
	Balance)	Earned)	
0			p
1	p	ip	p+ip
2	p+ip or p(1+i)	ip(1+i)	$p(1+i) + ip(1+i) = p(1+i)^2$
3	$p(1+i)^2$	$ip(1+i)^2$	$p(1+i)^{2} + ip(1+i)^{2} = p(1+i)^{3}$
4	$p(1+i)^{3}$	$ip(1+i)^3$	$p(1+i)^3 + ip(1+i)^3 = p(1+i)^4$
•			
•			
Ν	$p(1+i)^{N-1}$	$ip(1+i)^{N-1}$	$p(1+i)^{N-1} + ip(1+i)^{N-1} = p(1+i)^{N}$

Compound Interest Formula

Example: What is the capital growth of N100 invested at interest rate i = 3% per year for three years.

Solution:

Year	Capital at time,	Interest from t to t+1(Interest	Capital growth at t+1
	t(Beginning Balance)	Earned)	(Ending Balance)
0			N100
1	N100	N0.03(100)=N3	N103
2	N103	N0.03(103)=N3.09	N106.09
3	N106.09	N0.03(106.09)=N3.18	N109.27

Or

Capital growth = $p(1+i)^N = N100(1+0.03)^3 = N109.27$ Note that the value of the **compound amount factor** could be read from compound interest tables. For instance, the future equivalent amount, F given the present amount, P may be computed as below; Future amount, $F = P(1+i)^N = P(F/P, i, N)$. Note that $(1+i)^N = (F/P, i, N)$ is the compound amount factor which can be read from the compound interest table.

Find F, given P = N100, i = 5% and N = 5 years. **Answer:** Open to the 5% page of the interest tables and look for the value corresponding to year, N = 5 under the F/P column. The value from the table is 1.276. Hence, Future amount, $F = P(1+i)^N = P(F/P, i, N) = N100(1.276) = N127.60$. Note that this future amount can be calculated without tables e.g. $F = P(1+i)^N = 100(1+0.05)^5 = N100(1.276) = N127.60$

2. <u>Discounting</u>: is calculating an equivalent amount of money in the present amount given some amount of money in the future $P = \frac{F}{(1+i)^N} = F(1+i)^{-N}$. Note that $(1+i)^{-N} = (P/F, i, N)$ is the single payment present worth factor.

Find P, given F = N1000, i = 6%, N = 8 years. You can use the interest formula or the tables. **Answer:** $P = \frac{F}{(1+i)^N} = F(1+i)^{-N} = N1000(1+0.06)^{-8} = N627.40$ or open to the 6% page of the interest table, under the P/F column, read the value corresponding to year N = 8. The value (P/F, i, N) = 0.6274, therefore, P = N1000(0.6274) = N627.40.

Solving for time (interest periods) and interest rate:

- a. Given F = 20, N = 5, and P = 10 find interest rate, i. Solution: $F = P(1+i)^N = 20 = 10(1+i)^5$ $\therefore i = \sqrt[5]{2} - 1 = 0.1487 = 14.87\%$
- b. Find N, given P = N3000, F = N6000 and i = 12% Solution: $F = P(1+i)^N = 6000 = 3000(1+0.12)^N = 3000(1.12)^N$ log(6000/3000) = N log(1.12)

$$N = \left(\frac{\log 2}{\log 1.12}\right) = 6.1165 \text{ time units}$$

3. Uniform Series (Annuity) Equal Payment Series:

Given A, i and N find F, where A

$$F = A\left[\frac{(1+i)^N - 1}{i}\right] = A(F/A, i, N).$$

The factor in the bracket i.e. $\left[\frac{(1+i)^N - 1}{i}\right]$ is known as the Uniform Series Compound Amount Factor or Equal Payment Series Compound Amount Factor.

Example: A sum of N10, 000 is invested at the end of each period for 15 periods. What is the amount in the fund after the 15^{th} payment has been made if the interest rate, i is 10%.

Solution:
$$F = A\left[\frac{(1+i)^N - 1}{i}\right] = A(F / A, i, N)$$

The equal payment, A= N10,000, i=10%, N=15

Hence,
$$F = 10,000 \left[\frac{(1+0.1)^{15} - 1}{0.1} \right] = 10,000(31.7725) = N317,725$$

Alternatively, F = A(F / A, i, N) = 10,000(F / A,10%,15). Open to 10% page of interest table under F/A pick the value that corresponds with the 15 time periods.

4. <u>Sinking Fund:</u> When a future amount is given with interest rate and time periods, equivalent uniform series can be calculated. Given F, i and N, calculate A

Solution: $A = F\left[\frac{i}{(1+i)^N - 1}\right] = F(A/F, i, N)$. The factor in the bracket i.e. $\left[\frac{i}{(1+i)^N - 1}\right] = (A/F, i, N)$ is known as the **Sinking Fund Factor**.

Example: How much must be invested at the end of each time period for 15 time periods, such that at the end of the 15^{th} payment we would have N20, 000. Interest rate, i = 10%.

Solution:
$$A = 20,000 \left[\frac{0.1}{(1+0.1)^{15} - 1} \right] = 20,000(0.0315) = N629.48$$

Alternatively, A = 20,000(A/F,10%,15 periods) and the value read from compound interest table.

5. <u>Capital Recovery:</u> Given P, i and N find A (equivalent uniform series).

$$A = P\left[\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right] = P(A/P, i, N)$$
. The factor in bracket $\left[\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right] = (A/P, i, N)$ is known

as the Capital Recovery Factor.

Example: An equipment costs N50, 000 and will be used for 5 years. It will have no salvage value at the end of 5 years. Find the equivalent uniform series if interest rate, i = 10%.

Solution:
$$A = 50000 \left[\frac{0.1(1+0.1)^5}{(1+0.1)^5 - 1} \right] = N13,190$$

Alternatively, A = 50,000(A/P,10%,5). The capital recovery factor can be read from the compound interest table.

6. Uniform Series Present Worth Factor:

Find P, the equivalent present amount given, annuity (A), interest rate (i) and interest periods N.

 $P = A \left[\frac{(1+i)^N - 1}{i(1+i)^N} \right] = A(P/A, i, N).$ The factor in the bracket is known as the **Uniform Series**

Present Worth Factor.

Example: How must be invested today in order to yield returns of N2500 at the end of each and every year for 8 years at i = 10%.

Solution: A = N2500, i = 10% and N = 8 years

$$P = A \left[\frac{(1+i)^{N} - 1}{i(1+i)^{N}} \right] = 2500 \left[\frac{(1.1)^{8} - 1}{0.1(1.1)^{8}} \right] = N13,337$$

Alternatively, P = 2500(A/P,10%,8). The uniform series present worth factor can be read from the compound interest table.